1. Gryadunov K.I. Comparative analysis of the quality indicators of aviation kerosene, biofuels and their mixtures / K.I. Gryadunov, A.N. Kozlov, V.M. Samoylenko, Sh. Ardeshiri. *Scientific Bulletin of MSTU GA*. 2019. Vol. 22. No. 5. pp. 67-75. (in Russian)

2. Airbus. Hydrogen. An important pathway to our zero-emission ambition [Electronic resource]: URL:https://www.airbus.com/innovation/zero-emission/hydrogen.html(accessed: 10.10.2020).

3. Ausilio Bauen; Niccolò Bitossi; Lizzie German, Anisha Harris; Khangzhen Leow.Sustainable Aviation Fuels. *Johnson Matthey Technology Review. *2020. V. 64. No 3. P. 263-278.

4. CIAM. Wings of the Motherland. 2018. No 5-6. [Electronic resource]: URL:https://ciam.ru/Крылья%20Родины%205-6_2018%20Круглый%20стол%20Криогенные%20технологии.pdf(accessed: 10.10.2020).(in Russian)

5. Daily I.W. Resistance coefficients for accelerated and decelerated flow through smooth tubes and orifices / W.L. Daily, W.L. Hanrew, K.W. Olive, J.M. Jordan J.M. *Trans. ASME. *1956. V. 78. No 9. P. 1071-1077.

6. Sparrow E., Siegel R. Unsteady turbulent heat transfer in tubes. *Trans. ASME. Ser. C. Journal of Heat Transfer.* 1960. V. 82. No 3. P. 170-180.

7. Liiv U.R. On hydraulic regularities in the accelerated movement of liquid in a pressure cylindrical pipeline. *Proceedings of the Tallinn Polytechnic Institute.* Series A. 1965. No. 223. pp. 43-50. (in Russian)

8. Graham R.W., Deissler R.G. Prediction of flow acceleration effect an turbulent heat transfer. *Trans. ASME. Ser. C. Journal of Heat Transfer.* 1967. V. 8a. No 4. P. 54-67.

9. Galitseyskiy B.M. Experimental study of non-stationary heat transfer in a pipe when changing the gas flow rate / B.M. Galitseyskiy, G.A. Dreitzer, V.G. Izosimov, E.K. Kalinin, V.K. Koshkin. *Izv. AN BSSR. Ser. Physical and Technical Sciences.* 1967. No. 2. pp. 56-64. (in Russian)

10. Galitseyskiy B.M. Non-stationary heat transfer in a pipe when changing the heat flow and gas flow rate / B.M. Galitseyskiy, G.A. Dreitzer, V.G. Izosimov, E.K. Kalinin, V.K. Koshkin. *Thermophysics of high temperatures.* 1967. Vol. 5 No. 5. P. 867-876. (in Russian)

11. Koshkin V.K. Experimental study nonsteady convective heat transfer in tubes / V.K. Koshkin, E.K. Kalinin, G.A. Dreitser, B.M. Galitseyski, V.G. Izosimov. *Int. J. Heat and Mass Transfer.* 1970. V. 13. No 8. P. 1271-1281.

12. Kawamura H. Experimental and analytical study of transient heat transfer for turbulent flow in a circular tube. *Int. J. Heat Mass Transfer.* 1977. V. 20. P. 443-480.

13. Markovsky P.M., Maloletov I.L., Chetrin V.F. Investigation of the turbulent structure of stationary and non-stationary gas flows in a pipe. *Collection of Heat transfer in aeronautical engineering.* M.: Izd. MAI 1984. Pp. 8-12. (in Russian)

14. Dreitser G.A. Experimental Study of Effect of Hydrodinamic Unsteadinesson a Turbulent Tube Gas Flow Structures and Heat Transfer/G.A. Dreitser, V.B. Bukharkin, V.M. Kraev, A.S. Neverov. *Heat Transfer**. Proc. of the ll-th Int. Heat and Mass Transfer Conf.*August 23-28. 1998. V. 3. P. 93-95.

15. Kalinin E.K., Dreitser G.A. Unsteady Convective Heat Transfer in Channels. *Advances in Heat Transfer*. 1994. V. 25. P. 1-150.

16. Dreitzer G.A., Kraev V.M. On the influence of hydrodynamic unsteadiness on the flow structure, heat transfer coefficients and hydraulic resistance in the turbulent flow of a coolant in a pipe. *Thermophysics of high temperatures.* 2004. Vol. 48. No. 3. P. 442-448. (in Russian)

17. Dreitzer G.A., Kraev V.M. Investigation of the structure of turbulent flows, heat transfer and hydrodynamics in the conditions of hydrodynamic unsteadiness. *Izvestiya RAS. Power engineering. *2006. No. 4. P. 131-144. (in Russian)

18. Kraev V. M. The current state of research on unsteady turbulent flows. *Bulletin of the Moscow Aviation Institute.* 2016. T. 23. No. 4. P. 61-67. (in Russian)

19. Valueva E.P., Popov V.N. Unsteady turbulent flow of liquid in a round pipe. *Izvestiya Akademii nauk SSSR. Fluid and gas mechanics.* 1993. No. 5. P. 150-157. (in Russian)

20. Valueva E.P., Popov V.N., Romanova S.Yu. Numerical simulation of processes of heat transfer and hydrodynamucs under conditions of liquid flow rate increasing with time. *High Temperature.* 1996. vol. 34. no 4. С. 546-554.

21. Valueva E.P. Hydrodynamics and heat transfer in the turbulent flow of liquid in a pipe under conditions of monotonous flow rate changes over time. *Thermophysics of high temperatures. *2005, vol. 43, no. 2, pp. 212-222. (in Russian)

22. Iguchi M., Ohmi M. Turbulent accelerating and decelerating pipe flows in quasisteady motion. *Technol. Repst. Osaka Univ. *1983. V. 33. no 1696. P. 97-107.

23. Faliy V.F. Unsteady convective heat exchange in a pipe. *Teploenergetika.* 1991. No. 3. p. 43-47. (in Russian)

24.Greenblatt D., Moss E.A. Rapid Transition to Turbulence in Pipe Flows Accelerated. *Journal of Fluids Engineering.* 2003. No 125(6). P. 1072-1075.

25. Greenblatt D., Moss E.A. Rapid temporal acceleration of a turbulent pipe flow. *J. Fluid Mech.* 2004. V. 514. P. 65-75.

26. Kraev V., Myakochin A. The unsteady turbulent flows structure study present status. *INCAS Bulletin.* 2019. V. 11. I.2. P. 111-124.

27. Kraev V.M., Myakochin A.S. Analysis of the structure of hydrodynamically unsteady turbulent flow in the channels of power installations of aircraft. *News of higher educational institutions. Aviation equipment. *2017. No. 2. p. 75-81. (in Russian)

28. Bongwan Jeong, Jae Hwa Lee. Turbulence in temporally decelerating pipe flows. *Journal of the Korean Society of Visualization.* 2016. V. 14. I.1. P.46-50.

29. Derevich I.V. On modeling of unsteady hydrodynamics in turbulent flow in pipes. *Thermophysics of high temperatures.* 2005. Vol. 43. No. 2. p. 231-248. (in Russian)

30. Derevich I.V. Relative particle velocity in a turbulent flow. *Fluid Dynamics.* 2008. vol. 43. no 3. p. 357-368.

31. Shuisheng H., Ariyaratne C., Vardy A.E.Wall shear stress in accelerating turbulent pipe flow. *Journal of Fluid Mechanics. *2011. V. 68(5). P. 440-460.

32. Shuisheng H., Ariyaratne C., Vardy A.E. Wall friction and turbulence dynamics in decelerating pipe flows.*Journal of Hydraulic Research. *2010. V. 48(6). P. 810-821.

33. Shuisheng H., Ariyaratne C., Vardy A.E.A computational study of wall friction and turbulence dynamics in accelerating pipe flow. *Computers & Fluids.* 2008. V. 37(6). P. 674-689.

34. Akshat M. Temporal acceleration of a turbulent channel flow / Akshat M., Som G., Shuisheng H., Show H. *Journal of Fluid Mechanics. *2017. V. 835. P. 471-490.

35. Shuisheng H. Experimental study and large eddy simulation of accelerating flow from an initial turbulent flow / H. Shuisheng, M. Akshat, S. Mehdi, G. Som. *10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP).* July 6-9, 2017, Chicago-IL, USA. 2017. V. 6. C-5. P. 1-6.

36. Stefan Fechter, Tim Horchler, Sebastian Karl, Klaus Hannemann. Numerical simulation of cryogenic flows under high-pressure conditions. *17th International Conference on Numerical Combustion.* 06-08. May 2019. Aachen, Germany. 2019. P. 141

37. Fechter S., Horchler T., Karl S. Efficient Handling of Cryogenic Equation of State for the Simulation of Rocket Combustion Chambers. *In book: Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. *2020. P. 19-30.

38. Haemisch J., Suslov D. Experimental Investigations of Heat Transfer Processes in Cooling Channels for Cryogenic Hydrogen and Methane at Supercritical Pressure. *In book: Non-Ideal Compressible Fluid Dynamics for Propulsion and Power.* 2020. P. 3-16.

39. Ohira K., Nakayama T., Takahashi K.Pressure Drop and Heat Transfer Characteristics of Boiling Nitrogen in Square Pipe flow. *Physics Procedia.* 2015. V. 67. P. 675-680.

40. Krayev V.M. Heat Exchange and Hydrodynamics of Turbulent Flows under Conditions of Hydrodynamic Nonstationarity. *Russian Aeronautics.* 2005. no 3. P. 39-42.

41. Markov S.B. Experimental study of the velocity structure and hydraulic resistances in unsteady pressure turbulent flows. *Mechanics of liquid and gas.* 1973. No. 2. P. 65-75. (in Russian)

42. Nikiforov A.N., Gerasimov S.V. Changes in the parameters of turbulent flow during acceleration and deceleration of the flow. *Engineering-physical Journal. *1985. No. 49(4). pp. 533-539. (in Russian)